Skip to Content

Boolean model of geroconversion


Altered molecular responses to insulin and growth factors (GF) are responsible for late-life shortening diseases such as type-2 diabetes mellitus (T2DM) and cancers. We have built a network of the signaling pathways that control S-phase entry and a specific type of senescence called geroconversion. We have translated this network into a Boolean model to study possible cell phenotype outcomes under diverse molecular signaling conditions. In the context of insulin resistance, the model was able to reproduce the variations of the senescence level observed in tissues related to T2DM's main morbidity and mortality. Furthermore, by calibrating the pharmacodynamics of mTOR inhibitors, we have been able to reproduce the dose-dependent effect of rapamycin on liver degeneration and lifespan expansion in wild-type and HER2–neu mice. Using the model, we have finally performed an in silico prospective screen of the risk–benefit ratio of rapamycin dosage for healthy lifespan expansion strategies. We present here a comprehensive prognostic and predictive systems biology tool for human aging.

Claudine Chaouiya (with Laurence Calzone)

model_submission | about seo