Skip to Content


Boolean model of geroconversion


Altered molecular responses to insulin and growth factors (GF) are responsible for late-life shortening diseases such as type-2 diabetes mellitus (T2DM) and cancers. We have built a network of the signaling pathways that control S-phase entry and a specific type of senescence called geroconversion. We have translated this network into a Boolean model to study possible cell phenotype outcomes under diverse molecular signaling conditions. In the context of insulin resistance, the model was able to reproduce the variations of the senescence level observed in tissues related to T2DM's main morbidity and mortality. Furthermore, by calibrating the pharmacodynamics of mTOR inhibitors, we have been able to reproduce the dose-dependent effect of rapamycin on liver degeneration and lifespan expansion in wild-type and HER2–neu mice. Using the model, we have finally performed an in silico prospective screen of the risk–benefit ratio of rapamycin dosage for healthy lifespan expansion strategies. We present here a comprehensive prognostic and predictive systems biology tool for human aging.

Claudine Chaouiya (with Laurence Calzone)

Senescence onset at the G1/S cell cycle checkpoint


DNA damage (single or double-strand breaks) triggers adapted cellular responses. These responses are elicited through signalling pathways, which activate cell cycle checkpoints and basically lead to three cellular fates: cycle arrest promoting DNA repair, senescence (permanent arrest) or cell death. Cellular senescence is known for having a tumour-suppressive function and its regulation arouses a growing scientific interest. Here, we advance a qualitative model covering DNA damage response pathways, focusing on G1/S checkpoint enforcement, supposedly more sensitive to arrest than G2/M checkpoint.

We define a discrete, logical model encompassing ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) pathways activation upon DNA damage, as well as G1/S checkpoint main components. It also includes the stress responsive protein p38MAPK (mitogen-activated protein kinase 14) known to be involved in the regulation of senescence. The model has four outcomes that convey alternative cell fates: proliferation, (transient) cell cycle arrest, apoptosis and senescence. Different levels of DNA damage are considered, defined by distinct combinations of single and double-strand breaks. Each leads to a single stable state denoting the cell fate adopted upon this specific damage. A range of model perturbations corresponding to gene loss-of-function or gain-of-function is compared to experimental mutations.

As a step towards an integrative model of DNA-damage response pathways to better cover the onset of senescence, our model focuses on G1/S checkpoint enforcement. This model qualitatively agrees with most experimental observations, including experiments involving mutations. Furthermore, it provides some predictions.

C. Chaouiya
Syndicate content

about seo