Skip to Content

Human

Mutually exclusive and co-occurring genetic alterations in bladder tumorigenesis

Summary: 

Relationships between genetic alterations, such as co-occurrence or mutual exclusivity, are often observed in cancer, where their understanding may provide new insights into etiology and clinical management. In this study, we combined statistical analyses and computational modelling to explain patterns of genetic alterations seen in 178 patients with bladder tumours (either muscle-invasive or non-muscle-invasive). A statistical analysis on frequently altered genes identified pair associations including co-occurrence or mutual exclusivity. Focusing on genetic alterations of protein-coding genes involved in growth factor receptor signalling, cell cycle and apoptosis entry, we complemented this analysis with a literature search to focus on nine pairs of genetic alterations of our dataset, with subsequent verification in three other datasets available publically. To understand the reasons and contexts of these patterns of associations while accounting for the dynamics of associated signalling pathways, we built a logical model. This model was validated first on published mutant mice data, then used to study patterns and to draw conclusions on counter-intuitive observations, allowing one to formulate predictions about conditions where combining genetic alterations benefits tumorigenesis. For example, while CDKN2A homozygous deletions occur in a context of FGFR3 activating mutations, our model suggests that additional PIK3CA mutation or p21CIP deletion would greatly favour invasiveness. Further, the model sheds light on the temporal orders of gene alterations, for example, showing how mutual exclusivity of FGFR3 and TP53 mutations is interpretable if FGFR3 is mutated first. Overall, our work shows how to predict combinations of the major gene alterations leading to invasiveness.

Curation
Submitter: 
Claudine Chaouiya

ERBB receptor-regulated G1/S transition

Summary: 

Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance

Background

In breast cancer, overexpression of the transmembrane tyrosine kinase ERBB2 is an adverse prognostic marker, and occurs in almost 30% of the patients. For therapeutic intervention, ERBB2 is targeted by monoclonal antibody trastuzumab in adjuvant settings; however, de novo resistance to this antibody is still a serious issue, requiring the identification of additional targets to overcome resistance. In this study, we have combined computational simulations, experimental testing of simulation results, and finally reverse engineering of a protein interaction network to define potential therapeutic strategies for de novo trastuzumab resistant breast cancer.

Results

First, we employed Boolean logic to model regulatory interactions and simulated single and multiple protein loss-of-functions. Then, our simulation results were tested experimentally by producing single and double knockdowns of the network components and measuring their effects on G1/S transition during cell cycle progression. Combinatorial targeting of ERBB2 and EGFR did not affect the response to trastuzumab in de novo resistant cells, which might be due to decoupling of receptor activation and cell cycle progression. Furthermore, examination of c-MYC in resistant as well as in sensitive cell lines, using a specific chemical inhibitor of c-MYC (alone or in combination with trastuzumab), demonstrated that both trastuzumab sensitive and resistant cells responded to c-MYC perturbation.

Conclusion

In this study, we connected ERBB signaling with G1/S transition of the cell cycle via two major cell signaling pathways and two key transcription factors, to model an interaction network that allows for the identification of novel targets in the treatment of trastuzumab resistant breast cancer. Applying this new strategy, we found that, in contrast to trastuzumab sensitive breast cancer cells, combinatorial targeting of ERBB receptors or of key signaling intermediates does not have potential for treatment of de novo trastuzumab resistant cells. Instead, c-MYC was identified as a novel potential target protein in breast cancer cells.

Curation
Submitter: 
Claudine Chaouiya
Syndicate content


about seo