Prostate cancer is the second most occurring cancer in men worldwide, and with the
advances made with screening for prostate-specific antigen, it has been prone to early
diagnosis and over-treatment. To better understand the mechanisms of tumorigenesis and
possible treatment responses, we developed a mathematical model of prostate cancer which
considers the major signalling pathways known to be deregulated.
The model includes pathways such as androgen receptor, MAPK, Wnt, NFkB, PI3K/AKT,
MAPK, mTOR, SHH, the cell cycle, the epithelial-mesenchymal transition (EMT), apoptosis
and DNA damage pathways. The final model accounts for 133 nodes and 449 edges.
We applied a methodology to personalise this Boolean model to molecular data to reflect the
heterogeneity and specific response to perturbations of cancer patients, using TCGA and
GDSC datasets.