Skip to Content

Human

Signalling in prostate cancer

Summary: 

Prostate cancer is the second most occurring cancer in men worldwide, and with the
advances made with screening for prostate-specific antigen, it has been prone to early
diagnosis and over-treatment. To better understand the mechanisms of tumorigenesis and
possible treatment responses, we developed a mathematical model of prostate cancer which
considers the major signalling pathways known to be deregulated.
The model includes pathways such as androgen receptor, MAPK, Wnt, NFkB, PI3K/AKT,
MAPK, mTOR, SHH, the cell cycle, the epithelial-mesenchymal transition (EMT), apoptosis
and DNA damage pathways. The final model accounts for 133 nodes and 449 edges.
We applied a methodology to personalise this Boolean model to molecular data to reflect the
heterogeneity and specific response to perturbations of cancer patients, using TCGA and
GDSC datasets.

Curation
Submitter: 
Aurelien Naldi

Differentiation of Monocytes to Dendritic Cells

Summary: 

This logical model accounts for the differentiation of monocytes into monocyte-derived dendritic cells (moDCs) and macrophages. It recapitulates the main established facts regarding wild-type differentiation of monocytes and macrophages in the presence of CSF2 and/or IL4, as well as the impact of various documented mutations. This model integrates documented regulatory interactions, together with novel interactions predicted from public transcriptomic and epigenomic data, enabling to validate in silico various novel transcriptional regulatory links presumably involved in this differentiation process.

Curation
Submitter: 
Aurelien Naldi

Response to BRAF treatment in melanoma and colorectal cancer

Summary: 

The study of response to cancer treatments has benefited greatly from the contribution of different
omics data but their interpretation is sometimes difficult. Some mathematical models based on
prior biological knowledge of signaling pathways, facilitate this interpretation but often require
fitting of their parameters using perturbation data. We propose a more qualitative mechanistic
approach, based on logical formalism and on the sole mapping and interpretation of omics data,
and able to recover differences in sensitivity to gene inhibition without model training. This
approach is showcased by the study of BRAF inhibition in patients with melanomas and colorectal
cancers who experience significant differences in sensitivity despite similar omics profiles.

We first gather information from literature and build a logical model summarizing the regulatory
network of the mitogen-activated protein kinase (MAPK) pathway surrounding BRAF, with factors
involved in the BRAF inhibition resistance mechanisms. The relevance of this model is verified by
automatically assessing that it qualitatively reproduces response or resistance behaviors identified
in the literature. Data from over 100 melanoma and colorectal cancer cell lines are then used to
validate the model’s ability to explain differences in sensitivity. This generic model is transformed
into personalized cell line-specific logical models by integrating the omics information of the cell
lines as constraints of the model. The use of mutations alone allows personalized models to
correlate significantly with experimental sensitivities to BRAF inhibition, both from drug and
CRISPR targeting, and even better with the joint use of mutations and RNA, supporting
multi-omics mechanistic models. A comparison of these untrained models with learning approaches
highlights similarities in interpretation and complementarity depending on the size of the datasets.

Curation
Submitter: 
aurelien

Immune checkpoints

Summary: 

After the success of the new generation of immune therapies, immune checkpoint receptors have become one important center of attention of molecular oncologists. The initial success and hopes of anti-programmed cell death protein 1 (anti-PD1) and anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA4) therapies have shown some limitations since a majority of patients have continued to show resistance. Other immune checkpoints have raised some interest and are under investigation, such as T cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT), inducible T-cell costimulator (ICOS), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3), which appear as promising targets for immunotherapy. To explore their role and study possible synergetic effects of these different checkpoints, we have built a model of T cell receptor (TCR) regulation including not only PD1 and CTLA4, but also other well studied checkpoints (TIGIT, TIM3, lymphocyte activation gene 3 (LAG3), cluster of differentiation 226 (CD226), ICOS, and tumour necrosis factor receptors (TNFRs)) and simulated different aspects of T cell biology. Our model shows good correspondence with observations from available experimental studies of anti-PD1 and anti-CTLA4 therapies and suggest efficient combinations of immune checkpoint inhibitors (ICI). Among the possible candidates, TIGIT appears to be the most promising drug target in our model. The model predicts that signal transducer and activator of transcription 1 (STAT1)/STAT4-dependent pathways, activated by cytokines such as interleukin 12 (IL12) and interferon gamma (IFNG), could improve the effect of ICI therapy via upregulation of Tbet, suggesting that the effect of the cytokines related to STAT3/STAT1 activity is dependent on the balance between STAT1 and STAT3 downstream signalling.

Curation
Submitter: 
Aurelien Naldi

Differential expression of IL17 isoforms A and F in helper T Lymphocytes

Summary: 

IL-17A and F are critical cytokines in anti-microbial immunity but also contribute to auto-immune pathologies. Recent evidence suggests that they may be differentially produced by T-helper (Th) cells but the underlying mechanisms remain unknown. To address this question, a logical model containing 82 components and 136 regulatory links was developed and calibrated with original flow cytometry data using naive CD4+ T cells in conditions inducing either IL-17A or F. Model analyses led to the identification of the transcription factors NFAT2A, STAT5A and Smad2 as key components explaining the differential expression of IL-17A and IL-17F, with STAT5A controlling IL-17F expression, and an interplay of NFAT2A, STAT5A and Smad2 controlling IL-17A expression.

The analysis notebook is available on github: https://github.com/GINsim/GINsim.github.io/blob/hugo/content/models/2020...

Curation
Submitter: 
Aurélien Naldi

T cells response to CTLA4 and PD-1 checkpoint inhibitors

Summary: 

This comprehensive model integrates the available data on T cell activation, taking into account CTLA4 and PD-1 checkpoint inhibitory pathways. It encompasses 216 components and 451 regulatory arcs.

To ease the verification of the behaviour of this large logical model, we have designed a modular approach based on a unit testing framework used in software development. Furthermore, to compare the respective impact of the activation of the two checkpoints, we have designed a value propagation technique enabling the analytical computation of all the nodes frozen following the persisting activation or inhibition of any model component. The model verification approach greatly eased the delineation of logical rules complying with predefined dynamical specifications, while the use of the value propagation technique provided interesting insights into the differential potential of CTLA4 and PD-1 immunotherapies.

All our analyses have been implemented into two python notebooks, enabling their reproduction or extension with the most recent version of the CoLoMoTo Docker image (http://www.colomoto.org/notebook).

Preview the unit testing notebook

Preview the value propagation analysis notebook

Curation
Submitter: 
Aurelien Naldi

Contribution of ROS and metabolic status to neonatal and adult CD8+ T cell activation

Summary: 

The low response to infection in neonatal T cells contributes to a high incidence of morbidity and mortality. Here we evaluated the effect of the cytoplasmic and mitochondrial levels of Reactive Oxygen Species (ROS) of neonatal CD8+T cells on their low activation. This model captures the interplay between antigen recognition with ROS and metabolic status in T cell responses. This model displays alternative stable states, which corresponds to different cell fates, i.e. quiescent, activated and anergic, depending on ROS status.

The associated notebook can be loaded using the CoLoMoTo notebook docker image (see http://www.colomoto.org/notebook).

Curation
Submitter: 
Aurelien Naldi

TCR and TLR5 merged Boolean model

Summary: 

CD4+ T cells recognize antigens through their T cell receptors TCR). However, additional signals involving co-stimulatory receptors, for example CD28, are required for proper T cell activation. Alternative co-stimulatory receptors have been proposed, including members of the Toll-like receptor family, such as TLR5 and TLR2.

We report here three Boolean models for:
- the T cell receptor (TCR) signalling pathway;
- the Toll-like receptor (TLR5) signalling pathway;
- the combination of TCR and TLR5 pathway, taking into accounting cross-interactions.

These models were validated by analysing the responses of T cells to the activation of these pathways alone or in combination, in terms of CREB, c-Jun and p65 activation.
The resulting merged model accurately reproduces the experimental results, showing that the activation of TLR5 can play a similar role to that of CD28, regarding AP-1, CREB and NF-кB activation, thereby, providing insights regarding the cross-regulation of these pathways in CD4+ T cells.

Curation
Submitter: 
Pedro Monteiro

Molecular Pathways Enabling Tumour Cell Invasion and Migration

Summary: 

Understanding the etiology of metastasis is very important in clinical perspective, since it is estimated that metastasis accounts for 90% of cancer patient mortality. Metastasis results from a sequence of multiple steps including invasion and migration. The early stages of metastasis are tightly controlled in normal cells and can be drastically affected by malignant mutations; therefore, they might constitute the principal determinants of the overall metastatic rate even if the later stages take long to occur. To elucidate the role of individual mutations or their combinations affecting the metastatic development, a logical model has been constructed that recapitulates published experimental results of known gene perturbations on local invasion and migration processes, and predict the effect of not yet experimentally assessed mutations. The model has been validated using experimental data on transcriptome dynamics following TGF-β-dependent induction of Epithelial to Mesenchymal Transition in lung cancer cell lines. A method to associate gene expression profiles with different stable state solutions of the logical model has been developed for that purpose. In addition, we have systematically predicted alleviating (masking) and synergistic pairwise genetic interactions between the genes composing the model with respect to the probability of acquiring the metastatic phenotype. We focused on several unexpected synergistic genetic interactions leading to theoretically very high metastasis probability. Among them, the synergistic combination of Notch overexpression and p53 deletion shows one of the strongest effects, which is in agreement with a recent published experiment in a mouse model of gut cancer. The mathematical model can recapitulate experimental mutations in both cell line and mouse models. Furthermore, the model predicts new gene perturbations that affect the early steps of metastasis underlying potential intervention points for innovative therapeutic strategies in oncology.

Curation
Submitter: 
L. Calzone / C. Chaouiya

Mutually exclusive and co-occurring genetic alterations in bladder tumorigenesis

Summary: 

Relationships between genetic alterations, such as co-occurrence or mutual exclusivity, are often observed in cancer, where their understanding may provide new insights into etiology and clinical management. In this study, we combined statistical analyses and computational modelling to explain patterns of genetic alterations seen in 178 patients with bladder tumours (either muscle-invasive or non-muscle-invasive). A statistical analysis on frequently altered genes identified pair associations including co-occurrence or mutual exclusivity. Focusing on genetic alterations of protein-coding genes involved in growth factor receptor signalling, cell cycle and apoptosis entry, we complemented this analysis with a literature search to focus on nine pairs of genetic alterations of our dataset, with subsequent verification in three other datasets available publically. To understand the reasons and contexts of these patterns of associations while accounting for the dynamics of associated signalling pathways, we built a logical model. This model was validated first on published mutant mice data, then used to study patterns and to draw conclusions on counter-intuitive observations, allowing one to formulate predictions about conditions where combining genetic alterations benefits tumorigenesis. For example, while CDKN2A homozygous deletions occur in a context of FGFR3 activating mutations, our model suggests that additional PIK3CA mutation or p21CIP deletion would greatly favour invasiveness. Further, the model sheds light on the temporal orders of gene alterations, for example, showing how mutual exclusivity of FGFR3 and TP53 mutations is interpretable if FGFR3 is mutated first. Overall, our work shows how to predict combinations of the major gene alterations leading to invasiveness.

Curation
Submitter: 
Claudine Chaouiya
Syndicate content


about seo